Domain

Programmers Guide

Confidential

Last update: January 3, 2002

Author: Scott Brady

[image: image1.png]NEXTpage

1 Overview

“Domains” formally describe subsets of the data provided by NXT 3. Each domain contains an abstract set of paths to objects in the NXT 3 hierarchical structure. These domains are useful for developers to target certain actions to specific paths in the hierarchy.

Domains act as filters. For example, suppose you wanted the search engine to query only certain areas of a site. You could use domains to store the paths to query, thereby avoiding a custom solution for the search engine alone. The search engine could then use the filtering ability of the domain to limit the search to only the specified areas. This would then promote decoupling by separating the module that defines the query domain from the actual search engine.

Domains can be represented as strings. These “domain strings” are used to transport, store, and reconstruct… A domain string specifies one or more branches of a site's hierarchy. The domain string syntax defines the format in which a domain string must conform. To learn more about domain string syntax, see Appendix A.

Domains are case insensitive. This means that calling containsPath(“my/uppecase/path”) on a domain containing the path “MY/UPPERCASE/PATH” returns true because both paths are equal when case is ignored.

Domains have the following interactions with other components in the system:

· Access Control Service builds domains based on an ID list. The domain is then embedded within Expression to determine access rights.

· Expression can contain multiple domain objects. These domains are merged and intersected with each other.

· Search Engine implements DomainVisitor and traverses Domain objects contained within an Expression objects. The search engine only queries paths defined in Expression.

· Administrators allow site administrators to define access for users or groups to specific paths in the site. Site Administrators grant access to paths by adding them to the domain. The administration application displays a graphical tree that represents nodes in the site and indicates which nodes are included in the domain.

1.1 APIs

“Domain” consists of the following classes and interfaces:
Domain: An interface that defines read-only operations

ReadWriteDomain: An interface that adds mutator operations to the Domain interface
DomainImpl: A class that implements all operations defined in the Domain and ReadWriteDomain interfaces.

DomainVisitor: An interface that defines operations that are called once for every node in the internal tree structure.

1.1.1 Class diagram

[image: image2.wmf]ReadWrite

Domain

Domain

DomainImpl

DomainVisitor

2 API

2.1 Domain

2.1.1 Overview

The Domain interface defines a set of read-only operations. The methods defined in the Domain interface allows you to do one of the following:

· Ask if the domain contains a path or set of paths

· Get a domain relative to a specified path

· Get a domain string that represents the set of paths in the object

· Traverse the domain calling.

2.1.2 Usage

The following set of examples demonstrates how to query a domain for a set of paths:

// Construct a domain from a domain string, A[B],X(Y).

// myDomain contains the paths: ‘A’, ‘A/B’, all of A/B’s descendents

// ‘Y’, and all of Y’s descendents.

String strDomain = “A[B],X(Y)”;

Domain myDomain = new DomainImpl(strDomain);

// Returns true if the path is found in myDomain

System.out.println(“containsPath()”);

System.out.println(“‘A’: ” + myDomain.containsPath(“A”));

System.out.println(“‘A/B’: ” + myDomain.containsPath(“A/B”));

System.out.println(“‘A/B/C’: ” + myDomain.containsPath(“A/B/C”));

System.out.println(“‘X’: ” + myDomain.containsPath(“X”));

// Returns true if the path and all of if its descendents are found in myDomain

System.out.println(“containsPathAndDescendents()”));

System.out.println(“‘A’: ” + myDomain.containsPathAndDescendents (“A”));

System.out.println(“‘A/B’: ” + myDomain.containsPathAndDescendents (“A/B”));

System.out.println(“‘A/B/C’: ” + myDomain.containsPathAndDescendents (“A/B/C”));

System.out.println(“‘X’: ” + myDomain.containsPathAndDescendents (“X”));

// Returns true if the path or at least one if its descendents is found in myDomain

System.out.println(“containsPathOrAnyDescendents()”));

System.out.println(“‘A’: ” + myDomain.containsPathOrAnyDescendents (“A”));

System.out.println(“‘A/B’: ” + myDomain.containsPathOrAnyDescendents (“A/B”));

System.out.println(“‘A/B/C’: ” + myDomain.containsPathOrAnyDescendents (“A/B/C”));

System.out.println(“‘X’: ” + myDomain.containsPathOrAnyDescendents (“X”));

This code block outputs
containsPath()

‘A’: true

‘A/B’: true

‘A/B/C’: true

‘X’: false

containsPathAndDescendents()

‘A’: false

‘A/B’: true

‘A/B/C’: true

‘X’: false

containsPathOrAnyDescendents()

‘A’: true

‘A/B’: true

‘A/B/C’: true

‘X’: true

The following block of code extracts a relative domain from an existing domain:

// Construct a ReadWriteDomain

ReadWriteDomain original = new Domain("A[B,C(D,E)]");

// Get a domain relative to the path 'A/C' in original

Domain relative = original.getRelativeDomain("A/C");

// Print out the domain string for relative

System.out.println("Output: " + relative.toString());
// Output: C(D,E)

In this example, we create a new Domain, relative, that contains a subset of the original domain’s paths. More precisely, relative contains the paths that have A/C as a root path in the original.

Note: Use caution after using this method. Changing the original domain can sometimes alter the contents of the relative domain. Because of this, you should not give away a ReadWriteDomain object while its relative domain is still being used.

2.2 ReadWriteDomain
2.2.1 Overview

The ReadWriteDomain interface inherits all methods from the Domain interface and adds mutator functions.
Note: ReadWriteDomain is not thread-safe. Because of this, it is the user’s responsibility to synchronize instances of ReadWriteDomain whenever they add or remove paths.

2.2.2 Usage

The following example demonstrates how to add paths from a domain using methods defined in the ReadWriteDomain interface.

// Construct an empty ReadWriteDomain object

ReadWriteDomain myDomain = new DomainImpl();

// Add the path 'A/B' and all of B's descendents to myDomain

myDomain.addPathAndDescendents("A/B”);

// Add the path 'A' to the myDomain

myDomain.addPath("A”);

// Add the path 'A/C' to the myDomain

myDomain.addPath("A/C”);

// Print out the domain string for myDomain

System.out.println("Output: " + myDomain.toString());

// Output: A[B,C[]]

New nodes are added to the end of child-list. As a result, the toString method produces a domain string that reflects the order in which paths were added.

A Domain can have multiple string representations because the sequence of paths depends on the order in which they were added to the domain. Two domain objects whose set of paths are equal will not always produce the same domain string.

Domain does not perform well with large flat structures. This is because nodes are positioned in the order in which they are added to the domain.
The following example removes paths from the ReadWriteDomain we just created:

// Remove 'A' from myDomain

myDomain.RemovePath("A”); // succeeds

// Print out the new domain string for myDomain

System.out.println("Output: " + myDomain.toString());

// Output: A(B)

// Fails because 'A/B/C' is implicitly included

myDomain.RemovePath("A/B/C”);

// myDomain did not change

System.out.println("Output: " + myDomain.toString());

// Output: A(B)

Removing paths can be tricky. Paths that are implicitly included in the domain cannot be removed with a single operation. This is because the domain does not have a knowledge of the complete path structure.

To remove the paths that were implicitly included in the domain, you must first remove the path’s parent and all of its descendents. Then you must re-add the parent and all siblings of the path. The following block of code shows how this is done.

// Remove the parent and all descendents

myDomain.removePathAndDescendents("A/B”); // succeeds

// Now, re-add the parent,

// and all of its descendents except 'A/B/C'.

myDomain.addPath("A/B/D”);

myDomain.addPath("A/B/E”);

myDomain.addPath("A/B/F”);

// Print out the new domain string for myDomain

System.out.println("Output: " + myDomain.toString());

// Output: A(B[D,E,F)

2.3 DomainImpl

2.3.1 Overview

Use the DomainImpl class when you want to create a new domain object.

2.3.2 Usage

The DomainImpl class implements the Domain and ReadWriteDomain interfaces.

Use the default constructor to create a domain that initially contains no paths. Use the constructor that takes a Boolean if you wish to create a domain that includes all paths. Use the constructor that takes a string to build a domain based on a syntax string.

Note: If you use the constructor that parses a string you should only use domain strings that have been created by other Domain objects.

2.4 DomainVisitor
2.4.1 Overview

The DomainVistior interface follows the visitor design pattern.

2.4.2 Usage

By implementing DomainVisitor and overriding its doVisit method, you will be able to define a custom operation that is called once for every node in the domain tree structure.

The following set of examples demonstrates how this is done.

First, you must implement the DomainVisitor class. By doing so, we also define the behavior of the doVisit method.

class DisplayVisitor implements DomainVisitor

{

// Contains information that is relative to the entire domain

int m_count = 0;

StringBuffer m_output;

/** We use a parameterized constructor extract information from the class */

DisplayVisitor(StringBuffer output)

{

m_output = output;

m_output.append("Count\tIncludeSelf\tIncDescendents\tHasChildren\tName\n");

}

/** Display all paths that are included in the domain to the console */

public void doVisit(String name, String path, boolean includesSelf, boolean includesDescendents, boolean hasChildren)

{

m_count++;

m_output.append(m_count + "\t" + includesSelf + "\t\t" + includesDescendents + "\t\t" + hasChildren + "\t\t" + path + name + "\n");

}

}

In the code above, we override the doVisit method so that it outputs all paths in the domain to the console. Notice that the class variable m_count is defined outside of the doVisit method. This enables our DisplayVisitor class to gather information that is relative to the entire domain. In this example, you use m_count to calculate the total number of nodes in the domain tree.

Now, we are ready to traverse a domain using our DisplayVisitor class which, implements DomainVisitor. The following code constructs a new domain object, and traverses itself using our DisplayVisitor class.

// Construct a new Domain object from a domain string

Domain traverseMe = new DomainImpl("A(B,C[]),D(*)");

StringBuffer sbNodes = new StringBuffer();

traverseMe.traverseDomain(new DisplayVisitor(sbNodes));

System.out.print(sbNodes.toString());

This code outputs the following to the console:

// Count
IncludeSelf
IncDescendents
HasChildren
Name

// 1
true

false

true

// 2
false

false

true

/A

// 3
true

true

false

/A/B

// 4
true

false

false

/A/C

// 5
false

true

false

/D

to the console. Notice that by using a parameterized constructor we were able to push the output into the StringBuffer, sbNodes. Finally, we output the contents of sbNodes to the console.

3 Appendix A – Domain String Syntax

Domain strings are used to store and transport domain objects. All domain strings should be generated solely by the domain object. You should never construct a domain string on your own.

Domain syntax defines the format that a domain string must conform to. A domain string specifies one or more branches of a site's hierarchy. Below, we define its syntax:

Table 2: Domain String Syntax Definition

domain-string => <universe-set> | <empty-set> | <domain-list>

universe-set => '*'

empty-set => ''

domain-list => <domain> (',' <domain>)*

domain => <path>? <name> <child-list>?

path => <name> '/' <path>*

child-list => (<parent-inclusive> | <parent-exclusive>)

parent-inclusive => '[' (<domain-list> | <empty-set>) ']'

parent-exclusive => '(' (<domain-list> | <universe-set>) ')'

name => Any valid path name
Note: Names that contain reserved domain characters, such as (‘]’) or (‘(‘), are escaped with the backslash character (‘\’) when generating a domain string. Likewise, the DomainImpl(String domain) constructor expects all reserved characters in names to be escaped. Otherwise, it throws java.lang.BreachOfContractException.

_1071647377.vsd

